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ABSTRACT

Here is a simple example of control of inherently unstable

system. An inverted pendulum pivoted on top of a cart is to be

stabilized by applying force to the cart through an electric motor.

In the electrical laboratory of the United States Naval Post-

graduate School, a cart with a stick pivoted on top of it has been

built, tested and simulated with CDC 1604 digital computer.

The author, Lieutenant Mu-yu Wan of the Chinese Navy, wishes

to thank Dr. Harold A. Titus of the United States Naval Postgrad-

uate School for his patient assistance in this work as thesis super-

visor.
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1. Introduction

It seems to be interesting to provide artificial stability for an

inherently unstable physical system. Some immediate questions

arise, such as: wtjat are the largest errors which can possibly be

corrected with a limited available control force, and what is the

best control strategy which minimizes the time required and maxi-

mizes the size of the system errors which can be corrected.

In this simple case here, an inverted pendulum pivoted on top

of a cart is to be stabilized by applying limited force to the cart

through an electric motor. This inherently unstable system is

assumed to be adequately represented by a set of linear differen-

tial equations over the range of interest. The type of instability

is represented by real non-negative characteristic roots. The

motor supply voltage is manipulated, within its allowable limits,

as a function of the state variables of the set of linear differential

equations.

In Chapter 3, an analog computer is used to really balance

the pendulum. The general schematic of the system is shown here.

control
| unstable

/*\

-£
Control

Computer
iimiter

7orce linear

system

state

variables

FIG. (1-1). General Schematic





In Chapter 4, the whole system is simulated with CDC 1604

digital computer. Graphs are plotted and situations discussed.

In Chapter 5, the techniquerof optimal discrete-time control

is introduced. The results simulated by CDC 1604 turned out to

be successful.





2. Uncontrolled System

2. 1 Linear Differential Equations

As shown in Fig.(2 - 1 -
1 ) 7

the instantaneous angle that the pendu-

lum makes with its unstable equilibrium position is 0, and the

position of the cart with respect to some reference point on the

floor is|... The coordinates are shown with positive displacement.

tt^ti
J ynotoT ty/

fageV

FIG. (2-1-1). System To Be Stabilized

For establishing the equations of motion, we define some addi-

tional symbols:

f force applied to cart

f - damping coefficient including friction and back e. m. f.

%

fv applied voltage force coefficient





g acceleration of gravity

M total system effective mass

m mass of the pendulum

r distance of pendulum mass center from hinge line

T pendulum radius of gyration about hinge line

V v'pltage applied to d. c. drive motor

The equations of motion can be found by consideration of the

following diagram.

* _e_r-

FIG. (2-1-2). Force Diagram Showing Equations of Motion
* Note: is very small.

The liniarized equations of motion are

2-
my 9 = mrg0 - mr^ (2.1.1)





and

M£ = - mrS + f (2. 1. 2)

where

f = f|i +f
vV (2. 1. 3)

We have data measurements as follows:

g = 9.8
m

/ sec 2

m = 0. 225 kg.

M = 6. kg.

r = 0. 44 m.

1 = length of longer part from hinge = 0. 94 m.

h = length of shorter part from hinge = 0. 035 m.

i*= (l
2 + 3h 2 - 31h) x 1

/ 3
= 0. 25 m 2

V = 24 volts (for selected D. C. motor)

The force exerted on the cart is 13. 6 newton while the cart is

held still, i. e. , \ = 0, thus from (2. 1. 3)

fv = ±=l^lJh =0 57
n/n

v V 24 v v

In (2. 1. 2), we have mass of the pendulum much less than mass of

the whole system, the term "mr9 n can be neglected, given:

M % = f = f; \ + f
vV (2. 1. 4)

Securing the pendulum (0 = 0), we run the cart on the floor

and observe the motion with a brush recorder, find the average

velocity and acceleration as:

. . \ . 5





% = 0. 90
m

/sec

and

= 0. 83
m/

sec

By (2. 1.4)

V n'i-lvV 11.8 n ~ sec
/ m.

Now (2. 1. 1) and (2. 1. 4) can be written as:

9

T

L0

.

f

5=^H v
Define

9 = q
i

•

9 = *i
= 9 2

I ~ *i

i Hr h
Then, we get a set of linear differential equations as:

e, = 9 2

In matrix form:

«1

'

8 2
-

\

S\

10
a o- fi

1

ii
M

*

9
1

9
2

+
J
1

t,

1, g

Vfv
n J

(2.1.1)

(2.1.4)

(2.1. 5)





Substituting numberical values:

81

92

1

17.2 3. 5

1

-2

f
-

9
1

X

9
2

+
-17. 2

k
^2 9. 8

Vfv
(2. L 5)

Or, by defining some new matrix names, and x* s as the name of

state variables:

(2.1. 6)

(2.1. 7)

(2.1.8)

x = [a] x + c_ u

re

Vfv
u " Mg

[4- 1

[A]- it
?

2 ~nfl

0, 1

r •

e
l

•

X = 6
2

X = 9 2

h

c_
= .11

r
2

g
<





2. 2 Transformation to Canonical Form

Assuming in our linear transformation matrix [Al there is some

eigenvector v associated with eigenvalue A
:

[A] v = 7v v

[A - A I] v =

or

|A - A.l| =

By (2.1. 8)

-;v 1

r
-A.

-A.

o #-A

=

There comes the characteristic equation:

The eigenvalues are:

V -flt
= - 4. 15

A2 = + i^ = + 4. 15

A 3
=

J

^+ =

n 2 /

where V ^

Only A and A j are non-negative or unstable.

With these eigenvalues all distinct, one can always find a new set

of state variables:

8





y4

related to x by the transformation

Z - O] 2£

such that the system of equations (2. 1. 6) transforms to:

(2. 2.1)

S^<

/V.

7v

/V

1+ Du (2. 2. 2)

with the 4x4 matrix [<qj and vector D given later.

From (2. 2. 1)

-1
2£ [»! (2. 2. 3)

Let

[Gr]-
1 -

§12

§22

§32

e13

§23

§14

§24

§34

§11

§21

§31 &32 e 33

§41 §42 §43 §44

The transformation matrix [Cy] is not unique, but a convenient

form for this problem can be found by four column vectors, all are

eigenvectors associated with one eigenvalue respectively.

9





Define

-1

L°r £ [4 ^2 ^3 v
4 ]

Where

[A - A. I] v. = i =1, 2, 3, 4

But Aj= -Az
= -J5Z ,

A
4 = -^^

7
(2. 1. 8) appears as:

(2. 2. 4)

(2. 2. 5)

[A] -

1

*

fl /\/f

AA
f

A,

(2.1. 8)

Solving (2. 2. 5) for i = 1

_^.

*i -A,

'*H

1
g21

\ 1 g
31

-A
l
+A4 g41

±=

There are many possible solutions, one set of which can be:

£ =e41

g
31

= °

g 21

At
A^

g.

AZ"A1

A*
11 Az-^ J

for i = 2, 3, 4 respectively (note X„ = 0), we can adopt:

g42
=

°

g =S
32

10





g

g

22

12

Ax-Aj

g43
-

g
33

= - gK
g23

=

g 13
- >

g44
= g/N

g

g

g

Then

34

g
//v>

2
-A| A-4-

24 (A-A+XAi-A^
-A*

14
(Al-A+X^-Af)

-A,

1<*1

-1

A2"A| 7^-Aj

A2-A 2 Az-Aj

1

Inverse of [g]
_±

is [g] :

-1

-1

[°]

1
Ai

X
A2

±
A+

-tFA_4

-a\
(a

1
-aa)(a 2.-a4.;

-Ai A^.

(A,-V)(Az-A+)

a*

A,4

I A1A4.

a A1-A4

i A2.A4.

3 Ai-A^.

l

3M
?

(2. 2. 6)

11





By (2.1. 6)

X =[A]x + £ U

By transformation

1 = [G] x

[G]
_1

i = [a][g]
_1

Z + cu

i =
L
G
][
A]fG]

_1
X + [G]cu

Define

[gKaKg]"
1

2fJ]-

/V
A.

A
A4-

fd 1
1

r ^1 l

i-%
d
2

A%

j-X
d
3

-

2

d
4

*

[G].c £ D §

Finally, we get the Jordan Canonical form of the system:

i = [J] Z + Du

(2.1. 6)

(2. 2. 7)

(2. 2. 8)

(2. 2. 9)

(2. 2.10)

12





2. 3 The Reduced System of Equations

In the last section, the whole system is represented by equation

(2. 2. 10). Now we have to show that for purpose of establishing a

controller which assures stability of the equilibrium point at the origin,

it is sufficient to consider the following reduced system.

y. = **> y^; + d. u i = 2,

3

(2.3.1)

without regard for the coordinates y
1

and y . , which associated

with negative eigenvalues.

If this is true, i. e. , a controller u = f (y 2 , y q
) can be found

which makes the system (2. 3. 1) asymptotically stable for some region

about the origin of the two dimensional space. By definition:

y. —? as t

—

* <*=> i = 2, 3

From (2. 3. 1)

(y. - dAi) -*- ast-xx? i = 2, 3

Then, certainly, as t —* <x>

jj a-diujdt^o **> .

s 2 3

But -f-fAt / /f-Mt

't

Then t+^
am
t-**°)

udt — At^O

13





This implies u (t) —^0 as t—^-coin the sense of its average

value over any very small non-zero time interval.

Now, we come back to those equations for y
1
and y . By

means of Jordan canonical form, the state variables are express-

ed by partial fraction as the following block diagram.

—> y\

u

d.

S"-A.

S -An

s -x

S -X

> y.

-^ y.

y

FIG. (2-3-1). State Variables in Jordan Canonical Form

Let h- (t) be the impulse response for y., then

Lim y. (At) = Lim h. (t-t ) u (t ) dt r 1- 4

Since h. (t) approaches zero exponentially as t —> &&

(because of negative eigenvalue), and since as mentioned above,

u (t) can be considered to approach zero under any integral sign,

it follows that y. —? as t—?• oo

14





Thus the initial displacement of the states y and y have

no effect on the region of stability of the complete system. There-

fore, from now on, we only consider the reduced system described

by equation (2;3sl).

15
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3. Control with an Analog Computer

3. 1 Selection of a Controller

A controller is needed to provide stability in the region of

controllability, which means the largest region in the state space

within which the system can be brought to the point of equilibrium

at the origin with the constraint u4:U. The controller will be a

function only of y2 and y„ , but through the transformation y;
= [C-JX

it will generally involve all the state variables of the original

system. Pontryagin' s maximum principle determines an optimum

u (t) which minimizes:

y.<i3 =1 f <y2 - y
3
)dt

with the constraint

|u| ^U
and final states

Yi (f) = i = 2, 3

£e
is some positive cost function, different kinds of which

lead to different kinds of controller. For the case of minimum-

time controller \ - 1. We define a new state variable:

y4
= y^> ' I dt

It follows

y = i

By adding this new state variable, our system gets:

16





y2 '*2^2 d
2
u

y
3

= • + u

\ 1

(3. 1. 1)

Pontryagin further defines the Hamiltonian function, maxi-

mizing this H function with respect to u has the same effect as

minimizing yCfc).

In our case:

For maximization with respect to u, probably the bang-

bang type controller (u = _ U) is the best consideration.

Let

u = U sgn [ f ' J

Usually f ' can be derived by solving the following canonical

equations.

P = _2H
i *yx

In this problem, it is hard to express them explicitly. In

view of piecewise linear switching, the following guess seems

reasonable,.

i - b y
3
-y

2

where b is some positive constant.

17
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Therefore

u = U sgnjby
3

- y 2 J
(3. 1. 3)

If there is no control on cart position, that means ^ is no longer

a state variable. Then by equations (2. 2. 1) and (2. 2. 6) the

uncoupled state y_ has no meaning. In this case the whole system

(2. 3. 1) reduces to:

y2 = -^2^2 + d
2
u * 3 '

1
'
4 *

u = U sgn[-y
2]

(3. 1. 5)

3. 2 Realization of the Control

Now, we get a minimum- time controller, which is (through

the functions of y2 and yj in terms of the original state variables,

namely, 0p 9r>, %^ and £ 2
. Those state variables can be gener-

ated by two potentiometers and two techometers. We select a

Donner Analog Computer to sum them up and use a D. C. relay to

generate sgn function. The real structure is shown as Fig. (3-2- 1)

3. 2. 1 No Control of Cart Position

By (3. 1. 5)

u = U sgn(- y2 ) (3. 1. 5)

By (2. 2. 6)

v = - - i-0 + L^^± C

= - - 0. 241
2

- 0. 138 %z (3. 2. 1. 1)

18





'IG. (3-2-1). eing Co i1 rolled alo Co p er

10





By measuring those potentiometer and tachometers, the

following data are obtained.

9. 1 volt corresponds to 0. 087 radian

0. 1 volt corresponds to 40. 4 radian/ sec

"^ 1 volt corresponds to 0. 36 meter/ sec

Multiplying these factors, we get:

u = U sgn [ 0. 087 Q
1
+ 9. 75

2
+ 0. 05 % 2 J (3. 2. 1. 2)

where

U = 0. 24 (3. 2. 1. 3)

The circuitry is built for the controller as shown in Fig. (3-2- 1-1
).

fekf Coil

FIG. (3-2-1-1). Controller Circuitry

3.2.2 With Control of Cart Position

By (3. 1. 3)

u = U sgn [by
3

- y
2 ]

(3. 1. 3)

20





From (2. 2. 6)

y = 1 e
-j

+ lh^
= °' 204V °' 102 ^

2? ?
(3. 2. 2: 1)

For ^ .

1 volt corresponds to 0. 05 meter

Then

y = 0. 0102 |t + 0. 036fJ
3

* 2

The following network is added to the connector in Fig. (3-2-1-1)

1M
vWW

?i" To ConNec-tor

°f fl% (3-2- 1-1)

FIG. (3-2-2-1). Additional Network for Position Control

If the value of b is not big enough, the cart has a tendency

to settle itself a little bit off-center. For instance, taking b=0. 08

(as shown in Fig. 3-2-2-1), the cart tends to settle itself about 0. 2

meter from its starting position. If the polarity of the potentio-

meter for £ is reversed, the cart will tend to settle in the opposite

side from the starting position. Anyhow, if b is big enough, the

cart will come back to its starting position. This is shown in

appendix II- 5, for b = 0. 7.

21





4. Simulation by Graphs

4. 1 The Region of Controllability

When we are playing with the physical cart, we can start the

cart motion by just pushing the pendulum off its vertical position.

Now, for the case of simulation with digital computer, we encounter

the problem of deciding the initial condition of 0.. In other words,

we want to know the region of controllability which means the

largest region in the state space from which the system still can

be brought back to its equilibrium point.

With a bang-bang type controller (u = _ U), the trajectories

consist of two segments corresponding to u = U and u = -U

respectively. The origin of the two-dimensional space can always

be reached by this switching of u. The region of controllability,

then, can be defined as the set of points reachable by the trajec-

tory starting at the origin (y^ =0, y3 = 0), and proceeding in

reverse time(0^t ^.- co) with u alternately taking values of +U

and -U. In our problem:

^2 =A 2 y2 + d2u

(2. 3. 1)

y
3

- d
3
u

Those first order differential equations can be easily solved

with solutions as:

22





y2 + (
d2u /7v 2 )

r ,a . a-2 ?_ = exp|A 2 (t-tJ (4.1.1)

y20
+ (

d2U/^)

-^r—^ = t - t (4. 1. 2)
dgll O

From (4. 1. 2), y„ is undefinted as t -> -<», no matter what the

initial value y is. Thus the region of controllability is unbounded

in the y 3
coordinate. Equation (4. 1. 1) shows directly that

y-
d2v2

H<f;
as t -* - CO , hence y2 must be bounded by:

'2

Numerically we have

|y2|<.0.45 (4.1.3)

By (2. 2. 6)

v = _ _1 q + L^±-y
2

9 ^^JVA^.
If only 9 has non-zero initial value, it must be bound as:

(O)U^Co. 45

This is the reason of using 0. 1 (radian) as the initial value of

angle displacement.

4. 2 Analysis by Graphs

4. 2. 1 No control on Cart Position.Equation (2. 1. 5) can be

written as:

23





X-

X,

X,

X,

1

17. 2 3. 5

1

-^2

', s.
r

N

x
l

x
2

-17. 2

X +
X
3

A 9. 8

X u (2. 1. 5)

By (3. 1. 5) and (3. 2. 1. 1):

u = 0. 24 sgn fx
1
+ 0. 241 x

2
+ 0. 138 x

4 ]
(4.2.1.1)

Now, this system can be simulated. For better accuracy, we

use sin x^ instead of x^. Graphs are shown in Appendix I. Same

initial angle for all graphs.

Fig. 1-1 shows pendulum angle vs. time, with initial angle

displacement 0. 1 radian. It comes back very quickly.

Fig. 1-2 shows the pendulum changing rate vs. time.

Fig. 1-3 shows the cart position vs. time.

Fig. 1-4 shows the phase plane (0 vs. 9). The tracjectory

does come back to the origin. It means stability.

»

Fig. 1-5 shows Zvs. 2. . As time goes on, the position

rate decreases linearly to zero.

Fig. 1-6 shows the control force vs. time. It is the bang-

bang type force; only the direction of the force is switched by the

relay.

4. 2. 2 With Control on Cart Position.

In this case, the system equations are same as before, but

the control force changes as:

24





u = 0. 24 sgn[x
1
+ 0. 241x2+(0. 102b+0. 138)x4+0. 204bx3 l

We simulate this system with the initial angle displacement

as before (0 (o) = 0. 1 radian). Graphs are listed in Appendix II.

Firstly with b = 0. 1 for position control.

Fig. II- 1 shows pendulum angle vs. time. It is stable.

Fig. II- 2 shows the phase plane. The tracjectory goes to the

origin.

Fig. II- 3 shows the cart position vs. time. It does not come

back very quickly, because the amount of b is too small.

Then take b = 0. 7 for position control.

Fig. II-4 shows the stick angle vs. time.

Fig, II- 5 shows the position vs. time. The cart comes back

to where it started very quickly.

25





5. Optimal Discrete -time Control

5. 1 The System in Discrete-time Form

Recall the original system as follows:

x = (A] x + c u (2. 1. 6)

Consider, firstly, the equation without control force.

x = (A] x (5. 1. 1)

and assume a Taylor series

x (t) = A + A
:
t + A

2 t
2

+. . . +Amt
m

+. . . (5. 1. 2)

to be the solution of the above homogeneous differential equation.

Then, set t = 0, one obtains:

x (0) = A— o

Next, if (5. 1. 2) differentiated and then t set to zero, one obtains:

x (0) = A
x

But, from (5. 1. 1)

x (0) = [A] x(0)

Then

A
1
=03 x (0)

If (5. 1. 2) is differentiated twice, and t set to zero, one

obtaines:

x (0) = 2A
2

or

2A
2

= x (0) = (A) x (0) = [A]
2
x (0)

26





So that

A 2
= 1/

2W 2
2£(0)

Continuing this process, all the terms A- can be evaluated,

and one obtains:

x (t) =
|
[i] +fA] t +C£i t +• • • + CAl"

1^ +...U(o) (5. i. 3)
I 2 f m I /

atBy comparing it with the scalar expansion of e , it is obvious

to have a more compact form, like:

x (t) = eAt x (0) (5. 1. 3. 1)

In imy case, eA* is a 4 x 4 matrix. It is usually called funda-

mental matrix and designated by:

(J
(t) £>e

At

Apparently

* (
- t

>

= e_At=
-«r7TT-

= -f 1(t) (5 - 1 - 4)

,
TO

Also

X (t) =
f

(t) x (o)

Then

x (t) = (t) x (o) = (A] x (t) = [A) </) (t) x (o)

So that

\ (t) = (>] / (t) (5. 1. 5)

In order to solve the equation (2. 1. 6), we try to find a particu-

lar integral in the form of

27





x (t) = p (t) y (t)-p r

By putting into (2. 1. 6), one obtains

(t) y (t) + j?l (t) y (t) = [A] jf (t) y (t) + c u (t)

By (5. 1. 5)

$ (t) y (t) = cu(t)

y(t) = ff\r)C U( rC)dZ

Then

x
p

(t)
=f>

(t)/ i> (TJ* u (T)dZ

By (5. 1.4)

x
p

(t) =
j> (t)| 4(-V± U(Z)dT (5. 1. 6)

In evaluation of (t), we know the argument t represents the

time interval between two instants. More conveniently, we can

describe by:

x (t2 ) =
f (t

2
- t% ) x (t

2
)

x (t 3 ) =
f (t 3

- t2 ) x (t2 ) = >f (t 3 - t
x)
x (t

x )

But XLii)^i>(tr tx)^(t1,''tl )X(t1 )

t^W'f (t 3~ t 2>' /<*2- *1>

By this reason, (5. 1. 6) can be put into the more familiar form of

a convolution integral.

x (t) = P/f (t -T) c u (T) dT (5. 1. 6. 1)

P /<>

Then the general solution of (2. 1. 6) will be:





x (t) =
</> (t) x (o) +f

t

f (t-r)cu (r ) cr

'o

In case of discrete time, it turns out to be:

(5. 1. 7)

x (k+1) =
f (DT) x (k) +

/
DT

/ (DT -£) c u ( Z ) dZT (5. 1, 8)

Where

DT = sampling time

By noting of a constant control force through the interval DT,

one obtains:

x (k + 1) = (DT) x (k) + u(k)^ /
DT

fi
(DT-r )cdr (5. 1. 9)

Or

x (k + 1) = jjf (DT)- x (k) +^ u (k) (5. 1. 10)

Where

(dt -n c dr
r 'Z 2 r _m m

6 (DT) = [ I] +[A] • DT + IAWDT1+- • +[£ (DT) +• • •

2 J m.'

The computation of A (DT) and (DT) would be very tedious,

but, with the high speed computer, they can be obtained within

seconds. The program to achieve this is shown in Appendix IV- 3.

(DT = 0. 1 sec. )

Where

-0. 0817

-1. 6067

0. 0458

0. 8882
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1. 0872 0. 1029 0. 0000 0. 0166

1. 7697 1. 0872 0. 0000 0. 3268

0. 0000 0. 0000 1. 0000 0. 0906

0.0000 0.0000 0.0000 0.8187

5. 2 Evaluation of Control Force ,

In optimal discrete-time control, if we want to minimize

the following cost function.

(5. 2. 1)

The second term represents the amount of control force

which can be allowed, arbitrarily r set to 1. The first term

gives the choice of state variables which will be minimized. In

J(n) =£ fx
1

(k) Q x (k) + ru
2

(k-1)]

my case, x
1
and Xo are those variables. So, Q becomes:

[Q]

\
l

o

\
By (5. 1. 10) (5.2. 1)

J(n) ^^(n-D+Aufn-l)!
1 QWn-1) +Au(n- 1)1 +ru

2
(n- 1) + J(iS-l)

Minimizing with respect to u(n-l), ,*Qd = and noticing
^u(n-l)

J^n-1) is independent of u(n-l), gives

jx* (n-1)
t
+u(n-l)A

1

/QA+At

QJ^x (n-1) +4u(n- l)/+2ru(n-l) =

u(n-l) = --T
A tQ^T

A LQA + r -x (n-1) (5. 2. 2)
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Define

a* P - £ S I (5.2.3)
1 A1 QA+r

Then

u(n-l) = a' x (n-1) (5. 2. 2. 1)

Substitute u(n-l) to (5. 2. 1), one obtains: (5. 2. 4)

J^n) =\}[i x (n-2)+Au(n-2)J +4a/[ IpQ^f J+aa^jj

+ r[ faja^f ]+[ ]
t Q [ ]+ ru

2
(n-2) + J(n-2)

Where a. = (a,*)
1"

[
]P[j^x (n-2) +£u (n-2)J

Further defining

-^ P +Aa
1

t
(5. 2. 5)

The first and third terms of (5. 2. 4) can be combined as:

([ ]*** + [ jta^JQf^ ]+Aa
a*C ]] + £ JtQC )

= [ ^(^Q/f +/
tQ^d-

1

t +a
1
^ 1Q/ + a

1
At Q4a

1

t
)[ ] + C J * QC J

= C J
t
(j^

t Q<^+^a
1
t>+a

1
At Q<^+Aa

1

t>)[ J + f ]* Qf J

= C )
t
(0

t + a
l
A 1)Q()?J4:^a

l
t
)( J+( J

* Q[ J

= C d^q^x: 3 +C ]*q£ J

Now, (5. 2. 4) becomes:

J(n) = L ]
t
ty1

t Qf1
+ Q)f j+r/: J

t a
1
a

1

t
f J + ru 2 (n-2) + J(n-2)

=
1 ]

t
( 1̂

t Qyx
+ Q+ rajaj )[ ] + ru 2 (n-2) + J(n-2)
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Define

Pj = y x Qf1
+ Q + r a

1
a

1
(5.2.6)

dJlnl = gives:
^u(n-2)

( ]

l p^+A^jC ] + 2 ru(n-2) =

(xt (n-2) 1 + u (n^^Jp A+^p L ] + 2 ru (n-2) =

u (n-2) = - f h? x (n-2) (5. 2. 7)

Define

a
2

=
-A*p^T7 < 5 - 2 - 8 >

Then

u(n-2) = ag* x (n-2) (5.2.7,1)

(5. 2. 3) becomes:

Define P -T Q

a
.t =.^_ (5.2.3.1)
1 A 1 p A +r

o

Continuing one more stage, and set . .
= 0, one obtains:

^u(n-3)

y2
=j2f+^a

2
t

P2 = ^2 P 1 V^ + Q + r a 2s 2

3 AtP 2
^+ r

u(n-3) = a^ x (n-3)

Continuing on the same procedure, one can expect the

following general forms.
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A - i
+A

*k

pk
=
Vpk-iy'k + ,3 + ra

k
a
k
t

t
a'V, i

a
k'/fpk-lA+r

u(n-k) = a, x (n-k)
k ~~

We note that u(n-k) depends solely on those present states

x (n-k). Thus makes clear Bellman's "Principle of Optimality",

which states: "An optimal policy has the property that whatever

the initial state and the initial control input rector are, the

remaining control input rectors must constitute an optimal policy

with regard to the state resulting from the first control signal.
"

When the number of stages gets very large, a converges

to some final set of values. Thus exists some fixed values for

the feedback compensation for all values of time and state variables.

With the help of CDC 1604 computer, 200 stages are accom-

plished. The program is shown in Appendix IV-4. Finally, one

obtains, for all sampling time:

2. 4846

u(t) =

0. 5990

0. 0074

0. 3448

x(t) (5. 2. 9)
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5. 3 Simulation by Integration

With the control force shown in (5. 2. 9), we can simulate

the system by calling a subcontine for integration. The control

force is calculated during every sampling instant and hold con-

stant until the next sampling instant.

The FORTRAN program achieving this purpose is shown

in Appendix IV- 5. Initial angle displacement is same as before,

x (1) = 0. 1 radian. Sampling time DT = 0. 1 second.

The graphs are collected in Appendix III.

Fig. Ill- 1 shows stick angle vs. time. The angle comes

back after about 40 stages.

Fig. Ill- 2 shows phase plane.

Fig. Ill -3 shows control force vs. time.

Fig. III-4 shows cart position vs. time. It gets back to the

starting position comparatively slowly.
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APPENDIX I

Graphs for No Control of Cart Position

1. Stick Angle vs. Time Without Position Control

2. Stick Angle Changing Rate vs. Time Without Position Control

3. Postion vs. Time Without Position Control

4. Phase Plane Without Position Control

5. Position Changing Rate vs. Position Without Position Control

6. Control Force vs. Time Without Position Control
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APPENDIX II

Graphs for Control of Cart Position

1. Stick Angle Vs. Time With Less Position Control (b = 0. 1)

2. Phase Plane With Less Position Control (b = 0. 1)

3. Position Vs. Time With Less Position Control (b = 0. 1)

4. Stick Angle Vs. Time With More Position Control (b = 0. 7)

5. Position Vs. Time With More Position Control (b = 0. 7)
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APPENDIX III

Graphs for Discrete-time Control

1. Stick Angle Vs. Time for Discrete-time Control

2. Phase Plane for Discrete-time Control

3. Control Force Vs. Time for Discrete-time Control

4. Position Vs. Time for Discrete-time Control
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APPENDIX IV

FORTRAN Programs

1. FORTRAN Program for Simulation without Position Control

2. FORTRAN Program for Simulation with Position Control

3. FORTRAN Program for Calculating
(f)

and A Matrix

4. FORTRAN Program for Calculating Discrete-time Control Force

5. FORTRAN Program for Simulation of Discrete-time Control
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.•JOB0250F,WAN
PROGRAM BROOM

C NO CART POSITION CONTROL
DIMENSION X(30) »XDOT(30)fC(15) '

C<10)=1.0
1 CALL JNTEG1 <T»X»XDOT»C)
X0OT(l)*X(2)
XDOT(2)»17«2*SINF(X( 1) >+3.5*X< 4)-17.2*U
XDOT(3)=X<4)
XDOT < 4 ) »-2 . 0*X ( 4 ) +9. 8*U
U=0.24*SIGNF(1.»X(1)+C(1)*X(2)+C(2)*X(4))
X(5)»U
GO TO 1

END
END
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PROGRAM BROOM
C POSITION CONTROL .

C RUN NO. TWO FOR MORE Y3 FEED BACK
DIMENSION X( 30) ,XDOT (30) »C( 15)
C( 10)=1.

1 CALL INTEG1 (T,X,XDOT,C)
XDOT( 1) =X(2)
XDOT(2)=17.2*SINF(X( 1 ) ) +3 . 5*X ( 4 ) -1 7 .2*1)

XD0T.(3)=X(4)
XDOT(4)=-2.*X(4)+9.8*U
U=0.24*SIGNF( l.»X(l)+C(l)*X(2)+(C(3)*0.102+C<2))
1*X(4)+C(3)*0.204*X(3) )

X( 5)=U
GO TO 1

END
END
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..JO30250F,WAN
PROGRAM PHIOEL

C COMPUTING PHI AND DELTA MATRIX
C DT=SAMPLING TIME

DIMENSION A(12,12),PHI(12,12)»TERM(12,12) »w/ORM( 12»12 )

1 ,DEL(4) ,DELM(4,4),TELM(4,4),DELP(4,4),C(4)
N = 4

1

1003
399

3991

DT=0.1
TM=0.0
READ1.
FORMAT
READ 1

PRINT

( (A( IR, IC)

,

IC=1,N) , IR=1»N)
( (4F20.8) )

, (C( I ) 1=1, N)

3 99,DT,((A(IR,IC),IC=1,N),IR=1,N)
FORMAT

(

///1X,3HDT=,1F5.3///,1X,7HA( I,J)=/,((4F10.2)))
PRINT 3991 (C( I.) ,I=1,N)
FORMAT ( ///1X,5HC(I)=/(4F10.2))

400

DO 400 IR=1,N
DO 400 IC=1»N
TERM( IR, IC) =0.0
WORM( IR , IC) =0.0
TERM{ IR,IR) =1.0
TELM(IR,IC)=TERM(IR, IC)*DT
DFLP( IR,IC)=TELM( IR, IC)

.DELM( IR , IC ) =0.0
DEL( IR)=0.
PHI ( IR, IC)=TERM( IR , I C

)

4 TM=1.0+TM
DO 5 00 IR=1»N
DO 500 IC=1,N
DO 500 JN=1,N
DELM( IR,IC) =DELM( IR, IC )-TELM( IR,JN)*A( JN, IC)*DT/( TM+1

50 WORM( IR,IC) =TERM( I R , JN ) *A ( JN , I C ) *DT/TM+WORM ( IR, IC)

DO 401 IR=1,N
DO 401 IC=1,N
TERM( IR,IC) =WORM( IR, IC)

TFLM( IR , IC) =DELM( IR, IC)

DELP( IR,IC) =DELP( IR, IC)+TELM( IR, IC)

PHI

(

IR,IC)=PHI { IR,IC)+TERM( IR,IC)
DELM( IR , IC) =0.

40 1 WORM( I R, IC) =0.0
ABC=0.0
DO 2 I=1,N
DO 2 J=1,N
AA=TERM( I ,J)
AB=ABSF(AA)
IF(ABC-AB) 3,3,2
FIND BIGGEST VALUE

3 ABC=AB
2 CONTINUE

IF(0.000000005-ABC) 5,5,6
5 GO TO 4

6 PRINT 502, ( (PHI

(

IR,IC) ,IC=1,N) ,IR=1,N)





50 2 F0RMAT(///1X»9HRHI ( I » J ) =/ ( ( 4F15 .9 ) ) )

DO 600 1=1,

N

DO .6 00 K=1»N
DO 600 J=i ,m

•

DEL( I )=DEL( I )+PHI ( I , J ) *DELP ( J K ) *C ( K )

PRINT 503 (DEL< I ) 1=1. N)
FORMAT (/// IX »7HDEL( I)=//(4F15.9))
END

|

END

600

503

i I

DT=0.10

A( I , J) =

.00 1.00 .00 .00
17.20 .00 .00 3.50

.00 .00 .00 1.00

.00 .00 .00 -2.00

C( I )
=

.00 -17.20 .00 9.80

PHI ( I ,J)=
1.087239756

. '1.769732445
0.000000000
0.000000000

0.102891421
1.087239756
0.000000000
0.000000000

0.000000000
0.000000000
1.00000000
0.00000000

0.016631936
0.326856101
.090634623
.818730753

DEL( I )
=

-.081750092 -1.606739468 0.045890345 0.888219310
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1=1 »N)
,I=1,N)

44

45

46

47

C
C

JOB0250F,WAN
PROGRAM OPTCON
MINIMUM J=SUM(XT(K ) *Q*X ( K ) +R*U**2

)

DIMENSION PHI(4,4),PSI(4»4),P(4,4) , DEL(4) .AT (20,4 ) ,

1 GM ( 4 , 4 ) , Q ( 4 , 4 ) , FM ( 4 ) EM ( 4

)

REAlS 1 »N,NM,NPRINT
1 FORMAT (8110)
READ2»R»DT
READ2, ( (Q( I ,J) ,J=1,N)
READ2> ( (PHI ( I ,J) ,J=1»N
REA62, (DEL( I )

,

1=1, N)

2 FORMAT ( (4F16.9)

)

PRINT 3,N,NM,NPRINT
3 FORMAT(///(8I10) )

PRINT 44,R,DT
F0RMAT(//1X,2HR=,F5.2,3X,3HDT=,F5.2)
PRINT 45, ( (Q( I , J) , J=1,N) ,I=1,N)
FORMAT (// IX, 7HQ( I»J)=/((4F16.9)))
PRINT 46, ( (PHI ( I ,J) ,J = 1 ,N) , 1 = 1, N)
F0RMAT(//1X,9HPHI (I,J)=/((4F16.9)))
PRINT 47, (DEL( I )

,

1=1, N)
FORMAT (// IX, 7HD EL ( I)=/(4F16.9)

)

DO 5I=1,N
D05 J=1,N
GM( I ,J)=0.0
EM( I )=0.0
FM( I )=0.0
P( I ,J)=Q( I , J)
PSI ( I ,J)=0.0

CALCULATE AT(K,J)
DO 22 KK=1,NPRINT
DO 2 K = 1,,NM

DEN = 0..0

D06 1=1, N

DO 6 J=1,N
EM( I )=EM( I )+DEL( J)^P( J, I

)

DO 8 I=1,N
DO 7 J=1,N
FM( I )=FM( I )+EM( J)*PHI.( J»I )

DEN=DEN+EM( I )*DEL( I

)

DEN=-DEN-R
DO 10 1=1, N

AT(K, I )=FM( I )/DEN
FM( I )=0.0
EM( I ) = 0.0

CALCULATE PSI(K,I,J)
DO 13 1=1,

N

DO 13 J=1,N
PSI(I»J)=PHI(I,J)+DEL(I)*AT(K»J)

10

13

CALCULATE
DO 16 1=1, N

P(K,I ,J)
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15

16
20

12
22

DO 16 J=1,N . •

DO 15 L=1»N
DO 1.5 M=1»N
GM( I »J)=GM( I ,J.)+PSI ( L» I )*P(L.M1*PSI (Mi J)
P( I ,J)=GM( I ,J)+R*AT(K,I }*AT(K»J)
FOR TERMINAL CONTROL OMIT Q(I.J)
GNU I » J) =0.0
CONTINUE

PRINT
PRINT 12»KK»(AT(NM»J)»J=1»N)
FORMAT (// IX, 3HAT( ,I2,2H)=/(4F16
CONTINUE
END
END

9)

AT( 10)=
2.484604417 •5990829066 •007459609 .344834834
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. . JOB0 250F,WAN
PROGRAM BROOM

C OPTIMAL DISCRETE TIMF CONTROL
C FOR SIMPLICITY. USE AT(J) IN LAST STAGE FOR ALL U

DIMENSION X(30) ,XDOT (30) *C( 15)
C ( 1 3 ) = 1

.

1 CALL INTEG1 (T,X,XDOT,C)
XDOT<( 1 ) =X(2)
XDOT(2) =17.2*SINF(X( 1) )+3. 5*X ( 4 )-17. 2*U
XDOT(3) =X(4)
XDOT( A) =-2.*X(A)+9.8*U
DT=0.1

C DT = HOLD TIME
IF(T-C(5)) 1,2,2

C ABOVE STATEMENT AS A ZERO ORDER HOLD
2 U = C( 1)*X( 1)+C(2)*X(2)+C<3)*X(3)+C(4)*X(4)

X(5)=U
C(5)=C(5)+DT
GO TO 1

END
END
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